GREGOR
Telescope, AO, BBI

Dirk Soltau
Kiepenheuer-Institut für Sonnenphysik
CASSDA School, April 20th, 2015
The demand for high spatial resolution
Show the simulations the truth?

Courtesy Oskar Steiner, KIS
Show the simulations the truth?

Solar Tornado

Credits: Wedemeyer-Böhm (2012). Image produced with VAPOR
High Resolution
Diffraction Limited Resolution

\[\theta = 1.22 \frac{\lambda}{D} \] [\text{rad}]

Example:
\[\lambda = 550 \text{ nm} \]
\[D = 1 \text{ m} \]

\[\theta = 0.67 \ \mu\text{rad} = 0.14 \text{ arcsec} \]

http://www.olympusmicro.com/primer/anatomy/numaperture.html
By the way: There is no free lunch

- Number of photons per arcsec\(^2\) \(\propto T \times D^2\)
- Size of the resolution element in arcsec\(^2\) \(\propto 1/ D^2\)

The number of photons per resolution element [arcsec\(^2\)] is a function of throughput not of diameter
Strehl

Strehl > 0.6 „good“
Strehl > 0.8 „diffraction limited“

[Diagram showing light intensity and Strehl factor comparison]
GREGOR Modulation Transfer Function (MTF)
Aperture, f-ratio, field of view

- Desired resolution at 550 nm: 0.1 arcsec
 - \rightarrow $D = 1.4$ m
- Pixel size = 10 µm
 - \rightarrow image scale = 0.1 arcsec/20 µm = 5 arcsec/mm
 - \rightarrow $f = 41.2$m
 - \rightarrow f-ratio = $f/30$
- Number of pixels = 4096
 - \rightarrow FOV = 200 arcsec

Image scale [arcsec/mm] = $\frac{1\text{ mm}}{5 \text{ arcsec}}$ = $\frac{206270}{f\text{[mm]}}$
Three types of mirror telescopes

Newton

Cassegrain

Gregory
Optical Design 1
The Simple Solution
McMath-Pierce, f/54

McMath-Pierce Solar Telescope Facility

f=86 m
McMath-Pierce (Lazy Seven, f/54)
Vacuum Tower Telescope (VTT)

D = 0.7 m
f = 45 m
f/64
VTT optical layout

3D Layout

VTT fov = 600 arcsec
19.03.2015

D. Soltan
KIS

VTTonly.png
Configuration:
SOLIS: A solar Cassegrain telescope
The Gregory Coudé telescope

\[D = 0.45 \text{ m} \]
\[f = 25 \text{ m} \]
\[f/55 \]
From Gregory to GREGOR

- Has to be shorter than 4 m to fit into dome
- Diameter: 1.5 m
 - $f/#$ of primary appr. 2
 - Diffraction limited resolution = 0.08 arcsec
- Central obscuration < 0.3 $\iff f/# M2 > 1$
- Secondary focus F2
Heat load in a solar telescope focus

- Solar power density (max) 0.1 W/cm²

In any solar telescope focus:

\[
power \text{ density magnification} \approx 10000 \left(\frac{D}{f} \right)^2
\]

Table 4.1 Heat intensity and maximum temperature related with different welding processes

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Welding process</th>
<th>Heat density (W/cm²)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gas welding</td>
<td>$10^2 - 10^3$</td>
<td>2500-3500</td>
</tr>
<tr>
<td>2</td>
<td>Shielded meta arc welding</td>
<td>10^4</td>
<td>>6000</td>
</tr>
<tr>
<td></td>
<td>Gas metal arc welding</td>
<td>10^5</td>
<td>>8000-10000</td>
</tr>
<tr>
<td>3</td>
<td>Plasma arc welding</td>
<td>10^6</td>
<td>15000-30000</td>
</tr>
<tr>
<td>4</td>
<td>Electron beam welding</td>
<td>$10^7 - 10^8$</td>
<td>20,000-30000</td>
</tr>
<tr>
<td>5</td>
<td>Laser beam welding</td>
<td>$>10^9$</td>
<td>>30,000</td>
</tr>
</tbody>
</table>

Power density in GREGOR F1 ≈ 300 W/cm² !!
Optical Design

D = 1.5 m
f/40
Power mirrors

<table>
<thead>
<tr>
<th></th>
<th>Radius of curv.</th>
<th>Conic const</th>
<th>f/#</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>-5013 mm</td>
<td>-1</td>
<td>f/1.8</td>
</tr>
<tr>
<td>M2</td>
<td>-1039 mm</td>
<td>-0.306</td>
<td>f/1.2</td>
</tr>
<tr>
<td>M3</td>
<td>-2797 mm</td>
<td>-0.538</td>
<td>f/4</td>
</tr>
</tbody>
</table>

Foci (FOV = 150 arcsec)

<table>
<thead>
<tr>
<th></th>
<th>f/#</th>
<th>Image scale</th>
<th>Magn.</th>
<th>FOV</th>
<th>Power</th>
<th>Power dens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>1.8</td>
<td>82 arsec/mm</td>
<td>1.8 mm</td>
<td>1.8 mm</td>
<td>1600 W</td>
<td>300 W/cm²</td>
</tr>
<tr>
<td>F2</td>
<td>6</td>
<td>23.6 arcsec/mm</td>
<td>3.5</td>
<td>6.3 mm</td>
<td>10 W</td>
<td>30 W/cm²</td>
</tr>
<tr>
<td>F3</td>
<td>40</td>
<td>3.6 arcsec/mm</td>
<td>6.6</td>
<td>41.6 mm</td>
<td>4 W</td>
<td>0.3 W/cm²</td>
</tr>
</tbody>
</table>
Optical quality in F1 (FOV = 200")

Scatter diameter: 150 µm = 12 arcsec
Optical quality in F2 (FOV = 200")

Scatter diameter: 40 µm = 1 arcsec

30 W/cm²
Optical quality in F3 (FOV = 200")

Scatter diameter:
20 µm = 0.07 arcsec

0.7 W/cm²
Overview of telescope structure and optical path

Dr. Reiner Volkmer, Kiepenheuer Institut für Sonnenphysik, Freiburg
Telescope structure

- Sun heats structure and mirrors \rightarrow open telescope and completely foldable dome (telescope in free air flow). *Telescopes with 1.5 m free aperture and evacuated light path are very difficult to build*.

- Full performance at wind speeds up to 20 m/s with relative pointing error (rms): 0.5” (open loop)

- Temperature difference to ambient : $\Delta T < -0.5$ K
Structure
Why Silicon Carbide main mirrors?

- solar radiation on surface of 1.5 m main mirror: **2000 W**
- ΔT mirror – ambient temperature should be < 1K (internal seeing)
- heating of mirrors is critical !!!
- silicon carbide has high thermal conductivity:

 $$K(\text{silicon carbide}) \sim 100 \times K(\text{Zerodur})$$

- silicon carbide mirrors can be "thinned" and structured (high stiffness)
 - ► light weight mirror (M1 ~ 90 kg) ➔ faster reaction on temperature changes
 - ► removal of heat on back side

- GREGOR: Primary, secondary and tertiary are silicon carbide mirrors
Mirror seeing - Mirror Cooling

• Heat transfer by thermal conductivity:

\[\dot{Q} = \frac{\lambda}{d} A \cdot \Delta T \]

\(d\) = thickness
\(A\) = area

<table>
<thead>
<tr>
<th>Material</th>
<th>(\lambda) [W/(mK)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0.03</td>
</tr>
<tr>
<td>Glass</td>
<td>0.76</td>
</tr>
<tr>
<td>Cesic</td>
<td>121</td>
</tr>
<tr>
<td>Zerodur</td>
<td>1.46</td>
</tr>
<tr>
<td>Copper</td>
<td>403</td>
</tr>
</tbody>
</table>

Example M1: Zerodur
\(D = 30\) mm
\(A = 1.7\) sqm
\(\Delta T = 3\) K
\(\Rightarrow\) \(\frac{dQ}{dt} = 250\) W

Example F1 heat stop: Copper
\(D = 10\) mm
\(A = 0.0005\) sqm
\(\Delta T = 10\) K
\(\Rightarrow\) \(\frac{dQ}{dt} = 200\) W
Primary mirror and field stop cooling
Thermal control system
The enemy
Some atmospheric optics
(index of refraction for air)

\[n(\lambda) = 1 + \left(272.6 + \frac{1.22}{\lambda^2}\right)10^{-6} \]

Wave length dependence of \(n \)

\[n(r) - 1 = \frac{77.6P}{T}10^{-6} \]

T and P –dependence of \(n \)

Example : \(P=1000 \text{ mbar}, \ T=293 \text{ K} \rightarrow \Delta n=10^{-6} \text{ per degree} \)
Some atmospheric optics (turbulence)

\[R_e = \frac{\rho \cdot v \cdot d}{\eta} \]

\(\rho \) : density
\(v \) : velocity
\(d \) : spatial scale
\(\eta \) : viscosity

\[E(k) \propto k^{-11/3} \]

Kolmogorov spectrum

Reynolds number \(R_e \): \(10^5 \), i.e. . Atmosphere is always turbulent and never laminar

Kolmogorov’s theory of turbulence

van Gogh, „Starry Night“
Some atmospheric optics: structure function

\[D_n = \left\langle \left[n_r(\vec{r}_1 + \vec{r}) - n_r(\vec{r}_1) \right]^2 \right\rangle = C_n^2 r^{-2/3} \]

Dn = Structure function \hspace{1cm} C_n^2 = structure constant (unit m^{-2/3})

\[C_n^2 \text{ is a function of height} \]

\[C_n^2 = 10^{-17} \text{ m}^{-2/3} \]

\[C_n^2 = 10^{-14} \text{ m}^{-2/3} \]
C_n^2 profile (Example Hufnagel model)

$$C_n^2(h) = \begin{cases} \left(2.210^{-53}\right)h^{10}\left(\frac{W}{27}\right)^2 e^{-h/1000} + 10^{-16} e^{-h/1500}\end{cases} e^{r(h,t)}$$

$$W = \left[\frac{1}{15\text{km}} \int_{5\text{km}}^{20\text{km}} v^2(h) dh\right]^{1/2}$$
Fried’s Parameter r_0

$$r_0 = \left[0.423 k^2 \sec(\beta) \int_0^L C_n^2(h) dh \right]^{-3/5}$$

r_0 is a kind of atmospheric “aperture”

$$k = \frac{2\pi}{\lambda}$$

$$r_0 \propto \lambda^{6/5}$$

$$\sigma_{\text{tilt}}^2 = 0.364 \left(\frac{D}{r_0} \right)^{5/3} \left(\frac{\lambda}{D} \right)^2 \left[\text{rad}^2 \right]$$

Übrigens: Allein die Korrektur für tip/tilt halbiert die durch die Turbulenz verursachte Varianz
Measuring r_0 (example)

$$\sigma_{\text{tilt}}^2 = 0.364 \left(\frac{D}{r_0} \right)^{5/3} \left(\frac{\lambda}{D} \right)^2 \text{[rad}^2\text{]}$$
DIMM = „Differential image motion monitor“
Adaptive Optics: The Idea

• Babcock (1953): *The possibility of compensating astronomical seeing*

Horace Welcome Babcock, 1912 - 2003
Adaptive Optics: An Additional Requirement for a Telescope Design

We need a pupil image

→ Relay Optics

http://lyot.org/background/adaptive_optics.html
GREGOR AO System: GAOS
GAOS: How many actuators do we need?

Subaperture: 10 cm x 10 cm
How large is the corrected FOV?

\[
\theta = 0.314 \frac{r_0}{H}
\]

Example: \(r_0 = 10 \text{ cm} \)
\(H = 2 \text{ km} \)

\(\theta = 1.6 \times 10^{-5} \text{ rad} = 3 \text{ arcsec} \)
Deformable mirror

DM Characteristics
• stacked-Piezo, made by CILAS
• 256 actuators, 196 illuminated
• 48mm illuminated diameter
• 5μm stroke
• 3.2mm actuator pitch
• new glueing technology
• first resonance frequency > 10 kHz
CILAS DM: 256 actuators

Figure 1: Waffle mode as tested in Orléans
Shack Hartmann WFS
Solar AO

- Target: Granulation
 - Intrinsic contrast: 14%
 - in telescope 2% bis 5%
 - structure size typical 2"

Observations mostly done in the visible and near infrared
Minimum size of subaperture?

![Graph](image)

19.04.2015
Data for 0.5500 to 0.5500 μm.
Surface: Image
Bottle neck: The WFS camera

1600 fps
Night time AO performance
Night time performance with AO

FWHM = 0.2 arcsec
Multi Conjugate AO for GREGOR
Back end instruments

- GRIS
- GFPI
- BBI (Broad Band Imager)
Broad Band Imager

- From telescope
- BS
- F4
- Collim. f = 400 mm
- BS
- Pupil
- Filter (wheel)
- Camera f = 486 mm
- Detector 1: PCO Sensicam
- Detector 2: (PCO 4000)
Broadband Imager
First Results - BBI

- June 2013, parallel with Sunrise flight
- Courtesy A. Lagg, R. Schlichenmaier, M. Franz
Summary

• GREGOR provides world class observing capabilities. It is:
 – A large telescope
 – at an excellent site
 – fully equipped with AO and back
 – beside an excellent VTT

...waiting for your exciting ideas