Imaging Spectro-Polarimetry with Long Exposure Times

T. A. Waldmann
CASSDA Workshop, 18.02.2014
Motivation and approaches
Motivation and approaches

Short exposed images, 20ms exposure each, 15 frames / sec
Motivation and approaches

Short exposed images, 20ms exposure each, 15 frames/sec

Long exposures: 420 ms exposure, 47 ms read out

Time
Motivation and approaches

- Short exposed images, 140ms exposure, 327 ms read-out

- Long exposures: 420 ms exposure, 47 ms read out

Time
Motivation and approaches

- Short exposed images: 140ms exposure, 327ms read-out
- Long exposures: 420ms exposure, 47ms read-out

Long-exposure PSF needed to deconvolve the frame!
Motivation and approaches

Short exposed images, 140ms exposure, 327 ms read-out

Long exposures: 420 ms exposure, 47 ms read out
Comparisons during this workshop

Short exposures: x ms exposure, y ms read-out

Long exposures: x ms exposure, y ms read out-out

Time
Comparisons during this workshop

- Short exposures: x ms exposure, y ms read out
- Long exposures: x ms exposure, y ms read out-out

Using averaged short exposures
Long-exposure PSF estimation

• Methods include, but are not limited to:
 - Use AO-telemetry data (e.g. Marino, 2007).
 - Use data from an additional imaging channel (e.g. Waldmann, 2011).
 - More sources available (e.g. Jollisant, 2004)…
PSF Estimation using an additional imaging channel
PSF Estimation

- PSF estimation is based on comparing the individual BB-images with a Speckle-Reconstruction of the BB-images.

- Photometry of Speckle-Reconstructions has been proven to be accurate (Wöger et al. 2008).
PSF Estimation

- Method introduced by Friedrich Wöger, 2007:
 - Iterative, regularized, constrained division in the Fourier-domain.
 - Gaussian shape of long exposure PSF.
 - PSF is non-negative.
 - MTF is limited by the MTF of the ideal telescope.
 - Division only if SNR exceeds a certain threshold.

- PIPE (Pipe Is a Psf Estimator):
 - Model PSF via wavefront phase at the telescope pupil.
 - Use simulated annealing to estimate a set of Zernikes that minimizes an error function.
 - Complete physical model of the PSF.
 - Slow.
 - No guarantee that the result is a (local, global, any…) minimum of the error function.
PSF Estimation

- Method introduced by Friedrich Wöger, 2007:
 - Iterative, regularized, constrained division in the Fourier-domain.
 - Gaussian shape of long exposure PSF.
 - PSF is non-negative.
 - MTF is limited by the MTF of the ideal telescope.
 - Division only if SNR exceeds a certain threshold.
 - Fast.
 - Limited, yet well justified, physical model for the PSF.

- PIPE (Pipe Is a Psf Estimator):
 - Model PSF via wavefront phase at the telescope pupil.
 - Use simulated annealing to estimate a set of Zernikes that minimizes an error function.
 - Complete physical model of the PSF.
 - Slow.
 - No guarantee that the result is a (local, global, any…) minimum of the error function.
PSF Estimation

• Method introduced by Friedrich Wöger, 2007:
 o Iterative, regularized, constrained division in the Fourier-domain.
 o Gaussian shape of long exposure PSF.
 o PSF is non-negative.
 o MTF is limited by the MTF of the ideal telescope.
 o Division only if SNR exceeds a certain threshold.
 o Fast.
 o Limited, yet well justified, physical model for the PSF.

• PIPE (Pipe Is a Psf Estimator):
 o Model PSF via wavefront phase at the telescope pupil.
 o Use simulated annealing to estimate a set of Zernikes that minimizes an error function.
PSF Estimation

• Method introduced by Friedrich Wöger, 2007:
 o Iterative, regularized, constrained division in the Fourier-domain.
 o Gaussian shape of long exposure PSF.
 o PSF is non-negative.
 o MTF is limited by the MTF of the ideal telescope.
 o Division only if SNR exceeds a certain threshold.
 o Fast.
 o Limited, yet well justified, physical model for the PSF.

• PIPE (Pipe Is a Psf Estimator):
 o Model PSF via wavefront phase at the telescope pupil.
 o Use simulated annealing to estimate a set of Zernikes that minimizes an error function.
 o More complete physical model of the PSF.
 o Slow.
 o No guarantee that the result is a (local, global, any...) minimum of the error function.
PSF Estimation

- Method introduced by Friedrich Wöger, 2007:
 - Iterative, regularized, constrained division in the Fourier domain.
 - Gaussian shape of long exposure PSF.
 - PSF is non-negative.
 - MTF is limited by the MTF of the ideal telescope.
 - Division only if SNR exceeds a certain threshold.
 - Fast.
 - Limited, yet well justified, physical model for the PSF.

- PIPE (Pipe Is a Psf Estimator):
 - Model PSF via wavefront phase at the telescope pupil.
 - Use simulated annealing to estimate a set of Zernikes that minimizes an error function.
 - More complete physical model of the PSF.
 - Slow.
 - No guarantee that the result is a (local, global, any...) minimum of the error function.
PSF Estimation

- **Method introduced by F. Wöger, 2007:**
 - Iterative, regularized, constrained division in the Fourier-domain.
 - Gaussian shape of the long exposure PSF.
 - PSF is non-negative.
 - MTF is limited by the MTF of the ideal telescope.
 - Division only if SNR exceeds a certain threshold.
 - Fast.
 - Limited, yet well justified, physical model for the PSF.

- **PIPE (Pipe Is a Psf Estimator):**
 - Model PSF via wavefront phase at the telescope pupil.
 - Use simulated annealing to estimate a set of Zernikes that minimizes an error function.
 - More complete physical model of the PSF.
 - Slow.
 - No guarantee that the result is a (local, global, any...) minimum of the error function.
Exemplary Results

- GFPI at VTT: Simulated long exposures (8*20 ms) and compared with MOMFBD and DSI.

![Image of simulated long exposures](image-url)
Exemplary Results

- GFPI at VTT: Simulated long exposures (8*20 ms) and compared with MOMFBD and DSI.

![Image of simulated long exposures](image-url)
Exemplary Results

- GFPI at VTT: Simulated long exposures (8*20 ms) and compared with MOMFBD and DSI.

DSI
MOMFBD 51
SPLE 1e5

Comparable Noise Levels
Exemplary Results

- GFPI at VTT: Simulated long exposures (8*20 ms) and compared with MOMFBD and DSI.

<table>
<thead>
<tr>
<th>DSI</th>
<th>MOMFBD 51</th>
<th>SPLE 1e6</th>
</tr>
</thead>
</table>

Increased Noise Level

Comparable Noise Levels

Increased Noise Level
Exemplary Results: Noise Levels

Stokes – V Continuum - DSI

Stokes – V Cont.- MOMFBD

Stokes – V Cont.- SPLE 1e5

Compute Standard Deviations for Stokes -Q, -U, -V.
Exemplary Results: Noise Levels

<table>
<thead>
<tr>
<th></th>
<th>DSI noise levels:</th>
<th>Stokes-Q: 0.004</th>
<th>Stokes-U: 0.004</th>
<th>Stokes-V: 0.003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MOMFBD noise levels:</td>
<td>Stokes-Q: 0.004</td>
<td>Stokes-U: 0.004</td>
<td>Stokes-V: 0.003</td>
</tr>
<tr>
<td></td>
<td>SPLE „soft“ deconvolutions noise levels:</td>
<td>Stokes-Q: 0.003</td>
<td>Stokes-U: 0.003</td>
<td>Stokes-V: 0.002</td>
</tr>
<tr>
<td></td>
<td>SPLE „hard“ deconvolutions noise levels:</td>
<td>Stokes-Q: 0.010</td>
<td>Stokes-U: 0.010</td>
<td>Stokes-V: 0.007</td>
</tr>
</tbody>
</table>

Regarding the numbers shown here, please note the last slide of this presentation.
Exemplary Results: Noise Levels

DSI noise levels:
Stokes-Q: 0.004
Stokes-U: 0.004
Stokes-V: 0.003

MOMFBF noise levels:
Stokes-Q: 0.004
Stokes-U: 0.004
Stokes-V: 0.003

SPLE"soft" deconvolutions noise levels:
Stokes-Q: 0.003
Stokes-U: 0.003
Stokes-V: 0.002

SPLE"hard" deconvolutions noise levels:
Stokes-Q: 0.010
Stokes-U: 0.010
Stokes-V: 0.007
Exemplary Results: Noise Levels

DSI noise levels:
Stokes-Q: 0.004
Stokes-U: 0.004
Stokes-V: 0.003

MOMFBD noise levels:
Stokes-Q: 0.004
Stokes-U: 0.003
Stokes-V: 0.002

SPLE „hard“ deconvolutions noise levels:
Stokes-Q: 0.010
Stokes-U: 0.010
Stokes-V: 0.007

ALL IS WELL
PIPE-PSF Estimation: Flaws and Justifications

• **VTT pupil was modelled with Zernikes only (i.e. no secondary, no spider).**

 † No pupil images were available.
 † Pupil-arrays were small (64x64 to 128x128 Pixel).
 † Results compared well with the Wöger-Method.
 † Results compared well with Speckle-Deconvolution results.

• **Finally, only 25/(50) Zernikes were used.**

 † In simulations, no big difference between using 25 and up to 50 Zernikes was seen.
 † Results compared well with the Wöger-Method.
 † Results compared well with Speckle-Deconvolution results.
PIPE-PSF Estimation: Flaws and Justifications

- VTT pupil was modelled with Zernikes only (i.e. no pupil images were available).
 - No pupil images were available.
 - Pupil-arrays were small (64x64 to 128x128 Pixel).
 - Results compared well with the Wöger-Method.
 - Results compared well with Speckle-Deconvolution results.

- Finally, only 25 Zernikes were used.
 - In simulations, no big difference between using 25 and up to 50 Zernikes was seen.
 - Results compared well with the Wöger-Method.
 - Results compared well with Speckle-Deconvolution results.

We wanted to proof the concept, not optimize the details!
PIPE-PSF Estimation: Things to do better!

• **VTT pupil was modelled with Zernikes only (i.e. no secondary, no spider).**
 o No pupil images were available.
 o Pupil-arrays were small (64x64 to 128x128 Pixel).
 o Results compared well with the Wöger-Method.
 o Results compared well with Speckle-Deconvolution results.

• **Finally, only 25/(50) Zernikes were used.**
 o In simulations, no big difference between using 25 and up to 50 Zernikes was seen.
 o Results compared well with the Wöger-Method.
 o Results compared well with Speckle-Deconvolution results.
PIPE-PSF Estimation: Things to do better!

• VTT pupil was modelled with Zernikes only.
 o No pupil images were available.
 o Pupil-arrays were small (64x64 to 128x128 Pixel).
 o Results compared well with the Wöger-Method.
 o Results compared well with Speckle-Deconvolution results.

 EASY : JUST DO IT !

• Finally, only 25/(50) Zernikes were used.
 o In simulations, no big difference between using 25 and up to 50 Zernikes was seen.
 o Results compared well with the Wöger-Method.
 o Results compared well with Speckle-Deconvolution results.
PIPE-PSF Estimation: Things to do better!

- VTT pupil was modelled with Zernikes only.
 - No pupil images were available.
 - Pupil-arrays were small (64x64 to 128x128 Pixel).
 - Results compared well with the Wöger-Method.
 - Results compared well with Speckle-Deconvolution results.

- Finally, only 25 Zernikes were used.
 - In simulations, no big difference between using 25 and up to 50 Zernikes was seen.
 - Results compared well with the Wöger-Method.
 - Results compared well with Speckle-Deconvolution results.

Two Possibilities:

a) Use code of Peter F. Perroni to estimate PSFs
b) Use more thorough model for a long exposure PSF
PIPE-PSF Estimation: How to do it better!

• **Work of Peter F. Perroni, 2013:**

 - Use GPUs instead of FPUs and a Cooperative Particle Swarm Optimization algorithm instead of simulated annealing.

• **More thorough model for a long exposure PSF:**

 - See, for example, the work of Jose Marino, 2007.
 - Other possibilities ?!

 - Note: if the statistics of the wavefront are used, a long exposure is an exposure in the order of > 0.5 seconds (cf. Marino, 2004).
Summary

- Spectro-Polarimetry with long exposure times can yield results close to the diffraction limit...
- ... at the lock point of the adaptive optics system...
- ..., i.e. size of field-of-view limited by anisoplanatism.
- SPLE using an additional imaging channel: proof-of-concept done...
- ... but methodology should be optimized ...
- ... and possible advantages taken that have not been used up to now.
Summary

• Spectro-Polarimetry with long exposure times can yield results close to the diffraction limit...

• SPLE using an additional imaging channel: proof-of-concept done...

• ... but methodology should be optimized...

• ... and possible advantages taken that have not been used up to now.
Some Comments

• Whatever PSFs you will use to deconvolve your data, deconvolution will enhance the contrast.

• Under- / Over-correction can lead to false deduction of physical parameters.

• Possible consistency checks:

 o Compare your results with independent findings (e.g. Sharmer et al, 2011).

 o Used a BB-Speckle-Reconstruction to estimate PSFs?
 > Check what happens when you deconvolve the raw BB-images (e.g. Waldmann, 2011).

 o Cross-check with other methods (e.g. this workshop, Waldmann, 2011; Marino, 2007).

 o Other possibilities?
Some Comments

• Whatever PSFs you will use to deconvolve your data, deconvolution will enhance the contrast.

• Under-/Over-correction can lead to false deductions of physical parameters.

• Possible consistency checks:

 o Compare your results with independent findings (e.g. Sharmer et al, 2011).

 o Used a BB-Speckle reconstruction to estimate PSFs? Check what happens when you deconvolve the raw BB-images (e.g. Waldmann, 2011).

 o Cross-check with other methods (e.g. this workshop, Waldmann, 2011; Marino, 2007).

 o Other possibilities?
Final conclusion

if faster_cameras_available_nowadays then begin
 long_exposures=maybe_obsolete
endif else begin
 long_exposures=worthwhile_trying
endelse
Thank you for your attention.
Bibliography

* The noise levels of the Stokes parameters shown here are different than the numbers given in Waldmann, 2011. This is due to a re-computation of the demodulation matrix of the GFPI polarimeter. Please contact CASSDA team members for details.