Visualizing Solar Image Data with J/Helioviewer and Event Searching with HEK

Daniel Müller
European Space Agency, ESTEC, The Netherlands
Daniel.Mueller@esa.int
Visualizing Solar Image Data with J/Helioviewer and Event Searching with HEK

The Helioviewer Team
André Dau, George Dimitoglou, Bernhard Fleck, Juan Pablo García Ortíz, Keith Hughitt, Jack Ireland, Markus Langenberg, Malte Nuhn, Stephan Pagel, Simon Spörri, Jeff Stys
Visualizing Solar Image Data with J/Helioviewer and Event Searching with HEK

The HEK Team
Visualizing Solar Image Data

Motivation

- Solar observatories generate huge amount of data
 SOHO (1995): 0.2 GB/day
 SDO (2010): 1.4 TB/day
 ATST (estimated average): ~12 TB/day
- Data covers wide ranges of length and time scales
- Many different data products available
Visualizing Solar Image Data

Motivation

• Solar observatories generate huge amount of data
 SOHO (1995): 0.2 GB/day
 SDO (2010): 1.4 TB/day
 ATST (estimated average): ~12 TB/day
• Data covers wide ranges of length and time scales
• Many different data products available

Goals

• Enable efficient data browsing and visualization
• Link data to knowledge bases and automated feature recognition algorithms
• Support data-driven modeling
Solar Dynamics Observatory

• **Payload:**
 - **Atmospheric Imaging Assembly (AIA)**
 - Full-disk images in 10 channels, up to 12 sec cadence, 16 MPixel
 - **Helioseismic & Magnetic Imager (HMI)**
 - (Vector) Magnetograms, Dopplergrams, Intensitygrams, 16 MPixel
 - **Extreme UV Variability Instrument (EVE)**
 - EUV irradiance ($\lambda=0.1$-105 nm), 0.1 nm spectral resolution, every 20 sec

SDO returns ~50 times more data than any previous space science mission!
Large Data Volumes: The Challenge

- **SDO:**
 - ~4 PB for 5-year mission: costly to store
 - Equivalent to 2-3 TV channels
 - Can be delivered to <6 sites from JSOC

- **ATST:**
 - Data generation ~4.5 PB/year
 - ATST/VBI after speckle processing: ~10^6 images/day (SDO/AIA: ~60,000 /day)
 (figures courtesy of K. Reardon)
Science with SDO: Why browse tools are essential

Example:
Long range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO
(C. Schrijver & A. Title, JGR 116, 2011)

• Shows that coupling of flares and eruptive events spans > 180° in longitude
• Data used for this study:
 • SDO/AIA+HMI, STEREO EUVI
• Data volume (compressed):
 • 800 GByte
• Download time @ 3 Mbit/s:
 • 25 days

Need to know what’s in the data before downloading in full science quality!
Science with SDO: Why browse tools are essential

AIA takes 16MP images in 10 channels, every 12 sec, 24/7

Challenges:

• Data access & distribution
• Search
• Visualization
Science with SDO: Why browse tools are essential

AIA takes 16MP images in 10 channels, every 12 sec, 24/7

Challenges:

• Data access & distribution
• Search
• Visualization

Solution:

• With JPEG 2000: Can compress 4k × 4k image to 1 MB
• 10 channels at 36 sec cadence → 24 GB/day = 8.8 TB/year
• Can keep comprehensive data set of browse data online for entire mission (science data: only few months)
The ESA/NASA Helioviewer Project

Front-Ends

- **JHelioviewer** - Java/OpenGL application
- **Helioviewer.org** - Web application

Back-End

Helioviewer Server:

- **JP2Gen** - FITS-to-JPEG 2000 processing pipeline
- **JPIP Server** - JPEG 2000 Interactive Protocol streaming server
- **Dynamo** - JPEG 2000 archive index, tiling engine, etc.
JHelioviewer

What is JHelioviewer?

- Client-server solution for browsing large data volumes, using
 - JPEG 2000 compression
 - JPIP for interactive streaming
 - OpenGL for fast rendering

Why use it?

- Interactively play & overlay time series of high-res images with arbitrary cadence
- Perform basic image processing on-the-fly
- Connect to event databases, overlay markers
- Export to common movie formats
- Request SDO science data
Example: Combine SDO + SOHO Data

SDO/AIA: 0-1.3 R_{sun}
LASCO/C2: 2-6 R_{sun}
LASCO/C3: 3.7-32 R_{sun}
Example: Combine SDO + SOHO Data

SDO/AIA: 0-1.3 R_{sun}
LASCO/C2: 2-6 R_{sun}
LASCO/C3: 3.7-32 R_{sun}
What is JPEG 2000?

JPEG 2000 = wavelet-based compression standard

Advantages:

• **Multi-resolution**
 Images at different resolutions are automatically created during wavelet compression

• **Random image access**
 Selected parts + quality layers can be accessed remotely

• **Flexible file format**

• **Well-suited for archives**
Remote Image Access via JPIP

- JPIP = JPEG 2000 Interactive Protocol
- Provides a client–server architecture for interactively transmitting image data over networks
- Can request arbitrary parts and quality levels of image series

Müller et al., Computing in Science & Engineering (2009)
JHelioviewer User Interface
JHelioviewer User Interface

Layer Manager

Layer Manager window with two selected layers:
- AIA 171 2010/12/06 12:36:00
- AIA 304 2010/12/06 12:35:56
JHelioviewer User Interface

Layer Manager

Add Layer

- Start Date: 2010/12/06
- Start Time: 00:59:36
- End Date: 2010/12/06
- End Time: 21:54:00
- Time Step: 30 min
- Observatory: SDO
- Instrument: AIA
- Detector/Measurement: 171 Å
JHelioviewer User Interface

Adjustments

- Selected Layer: AIA 304
- Quality: 8/8
- Opacity: 100%
- Sharpen: 0%
- Gamma: 1.0
- Color: SDO-AIA 304 Å
- Channels: Red, Green, Blue
JHelioviewer User Interface

Features/Events

- HEK (36/72)
 - Coronal Cavity (2/4)
 - Filament Eruption (10/20)
 - Filament (18/36)
 - Flare (4/8)
 - Other (2/4)
JHelioviewer User Interface
JHelioviewer Features

- Serving AIA images at 36s cadence
- Feature tracking
- Knowledgebase integration
- Plugin architecture
- RGB channel mixer
- Radial opacity filter
- Versatile movie export
- Save & load states
- SDO Cut-Outs data service
JHelioviewer Features

- Serving AIA images at 36s cadence
- Feature tracking
- Knowledgebase integration
- Plugin architecture
- RGB channel mixer
- Radial opacity filter
- Versatile movie export
- Save & load states
- SDO Cut-Outs data service
JHelioviewer Features

- Serving AIA images at 36s cadence
- Feature tracking
- **Knowledgebase integration**
- Plugin architecture
- RGB channel mixer
- Radial opacity filter
- Versatile movie export
- Save & load states
- SDO Cut-Outs data service
JHelioviewer Features

- Serving AIA images at 36s cadence
- Feature tracking
- Knowledgebase integration
- Plugin architecture
- RGB channel mixer
- Radial opacity filter
- Versatile movie export
- Save & load states
- SDO Cut-Outs data service
JHelioviewer Features

• Serving AIA images at 36s cadence
• Feature tracking
• Knowledgebase integration
• Plugin architecture
• **RGB channel mixer**
• Radial opacity filter
• Versatile movie export
• Save & load states
• SDO Cut-Outs data service
JHelioviewer Features

- Serving AIA images at 36s cadence
- Feature tracking
- Knowledgebase integration
- Plugin architecture
- RGB channel mixer
- Radial opacity filter
- Versatile movie export
- Save & load states
- SDO Cut-Outs data service
JHelioviewer Features

- Serving AIA images at 36s cadence
- Feature tracking
- Knowledgebase integration
- Plugin architecture
- RGB channel mixer
- Radial opacity filter
- Versatile movie export
- Save & load states
- SDO Cut-Outs data service
JHelioviewer Features

• Serving AIA images at 36s cadence
• Feature tracking
• Knowledgebase integration
• Plugin architecture
• RGB channel mixer
• Radial opacity filter
• Versatile movie export
• Save & load states
• SDO Cut-Outs data service
JHelioviewer Features

- Serving AIA images at 36s cadence
- Feature tracking
- Knowledgebase integration
- Plugin architecture
- RGB channel mixer
- Radial opacity filter
- Versatile movie export
- Save & load states
- SDO Cut-Outs data service
Helioviewer Project: Coming Soon...

Server-Side

• New API and back-end database structure to handle more complex data types such as spectral data (old API will still be supported for backwards compatibility)
• Hinode XRT and TRACE images
• Temperature maps (generated by Iain Hannah, U. Glasgow)

Helioviewer.org

• More flexible image selection options; support for more complex data products
• Generation of science data download scripts based on user selection
Helioviewer Project: Coming Soon...

JHelioviewer 3D
Space Weather Helioviewer

- 2-year ESA GSTP Project (2013-15) to add space weather capabilities to J/Helioviewer
- Led by Royal Observatory of Belgium (F. Verstringe, B. Bourgoignie, B. Nicula, D. Berghmans, C. Marqué, V. Delouille)

Incorporate new datasets

3D support:
- Rotate the image freely
- Overlay multiple images at their true location (SOHO)
- Hide/unhide outer corona
- Solar grids
- Show magnetic fieldlines

Switch to difference images

Space weather events
- Tag timelines with events
- Indicate events on disk

Plot space weather relevant timeline data

Show spectral radio image data

Acknowledgement
This is an ESA funded project: ESA ITT N° AO/1-7186/12/NL/GLC - High Performance Distributed Solar Imaging and Processing System) with support of the HelioViewer.org team.

References & affiliations
(1) Royal Observatory of Belgium
(2) www.JHelioViewer.org
(3) www.HelioViewer.org

Contact
Royal Observatory of Belgium
Ringlaan 3
1180 Ukkel
Belgium
swhv@oma.be

Space Weather Events
- Tag timelines with events
- Indicate events on disk

Plot space weather relevant timeline data

Show spectral radio image data
Helioviewer API

In order to facilitate third-party application developers who wish to use content from and interact with Helioviewer.org, a number of Application Programming Interfaces (APIs) have been developed, offering access to a variety of components used by Helioviewer.

http://www.helioviewer.org/api/

Use Cases

• Catalog of AIA images and movies based on RHESSI flare list (in development, Iain Hannah, U. Glasgow)
• Public outreach web application on the science of sunspots (US PBS NOVA TV show)
• Institut d’Astrophysique Spatiale, Paris: SDO data browse tool uses Helioviewer API to deliver images (http://medoc-sdo.ias.u-psud.fr/sitools/client-user/IAS_SDO_DATA/project-index.html)
Helioviewer Servers

- Main Helioviewer Server at NASA GSFC
- Additional servers have been installed at:
 - Montana State University
 - Project on content-based image retrieval services
 - Royal Observatory of Belgium
 - Space Weather JHelioviewer development, substitute server during recent US government shutdown
 - Institut d’Astrophysique Spatiale (IAS)
 - IAS uses Helioviewer Server for their SDO/AIA data browse tool
- Long-term goal: A distributed system of publicly accessible Helioviewer Servers
Student Involvement

- Most of JHelioviewer has been coded by students
- Open source approach is key
- All source code available at https://launchpad.net/helioviewer
The Heliophysics Event Knowledgebase (HEK)

What is HEK?

- Heliophysics Events Registry (HER)
 - Tells you what features and events have been found on the Sun
- Heliophysics Coverage Registry (HCR)
 - Tells you what data sequences are available (AIA, HMI, SOT, XRT, TRACE and more).

HEK is the integrated system which
- directs scientists to the data they need without blindly downloading TBs of images, and
- allows users to report new features/events and to contribute information on existing ones (hence “knowledge”).

HEK Event-Searching

You can search the HEK in different ways:

• Using visual browse tools (iSolSearch, Helioviewer.org, JHelioviewer)

• Using the Web API (http://www.lmsal.com/hek/api.html)

• Using SolarSoft IDL

• Using SunPy
HEK Event-Searching with iSolSearch

http://www.lmsal.com/isolsearch
HEK Event-Searching with SolarSoft/IDL

• Uses the SolarSoft *Ontology* package:

```
IDL> ssw_upgrade,/ontology,/spawn/loud
```

• A simple example: Query the HEK for all flares that occurred between \(t_{\text{Start}} \) and \(t_{\text{End}} \):

```
IDL> tstart = '2011/08/09 07:23:56'
IDL> tend = '2011/08/09 12:40:29'
IDL> result = ssw_her_query(ssw_her_make_query(tstart,tend,/flare))
```

• And then look up the corresponding SDO/AIA data using VSO:

```
IDL> aia=vso_search(inst='aia',event=result.fl[0])
```
HEK Event-Searching with SunPy

What is SunPy?

- SunPy (http://sunpy.org) is a community-developed, free and open-source software library for solar physics
- HEK module was developed by Austrian student Florian Mayer as part of ESA’s “Summer of Code in Space” programme
HEK Event-Searching with SunPy

• Same example as above, now using SunPy:

```python
>>> from sunpy.net import hek
>>> client = hek.HEKClient()

>>> tstart = '2011/08/09 07:23:56'
>>> tend = '2011/08/09 12:40:29'
>>> result = client.query(hek.attrs.Time(tstart, tend), hek.attrs.EventType(event_type))
```
Conclusions

• The Helioviewer Project enables users to navigate and explore petabyte-scale data archives

• The torrent of data from SDO has started to transform the way research in solar physics is done - good exercise for ATST!

• The Heliophysics Event Knowledgebase provides means to efficiently identify and access relevant data for research

• Helioviewer Project + SunPy are open source – share and enjoy

http://helioviewer.org
http://jhelioviewer.org
http://sunpy.org
http://www.lmsal.com/hek