
Manual for the
astrophysical lab course

Introduction to IDL

1 Introduction

IDL (Interactive Data Language) is a program language widely used in astrophysics, mainly for
data analysis.
Since IDL is a commercial software you will not be able to use it on your private computer.

There is a freeware version called GDL (Gnu Data Language) with the same syntax. GDL is
always some years behind the commercial original and it also lacks some features like saving data
or exporting figures. For this tutorial GDL is sufficient. We recommend to download and install
the software and to do the exercises in this manual before the astrophysical lab course. Especially
if you do not have any knowledge in programming this will make the lab course easier for you. If
you do already know a language, maybe C, C++ or Python, it should be an easy task anyway.

2 GDL compatible part

2.1 Using IDl as a calculator

You can perform all sorts of mathematical operations in the IDL prompt. Type in print, 2 + 2
and hit ENTER.

2.1.1 Data types and variables

You can assign values to variables. Variables always start with letter. IDL is not case sensitive.
For example:
a = 3
print, a
b = 4
c = a * b

2 IDL Manual

operator operation
+ addition
− subtraction
∗ multiplication
/ division
^ potentiation

mod modular
matrix multiplication

Tabelle 1: Mathematical operators in IDL.

!h

data type purpose example
integer whole number 1
long integer whole number 1L
floating point value real number 1.0
double real number 1D
complex complex number complex(1.0, 2.4)
string words 'hello'

Tabelle 2: This table shows some of the datatypes supported by IDL

print, c

Variables, like a, c and c in the example above always have a data type. IDL supports the
common data types most program languages do. Some are listed in table 2.

Be cautious if you operate with integers. Try something like print, 3 / 2 and compare the
result to print, 3.0 / 2.0. To be on the save side you should operate with floats during the lab
course.

In IDL you do not have to declare the type of a variable. It is possible to assign an other type
to an existing variable. For example you can do something like

a = ’a’
a = 1
print, a

This can lead to errors. Especially if you loose track on whether a variable is a float or an
integer.

Lab course Kiepenheuer-Institut für Sonnenphysik, Freiburg

Manual IDL 3

!h

function purpose
n_elements(arg) returns the length of an array
sqrt(arg) square root operation
min(arg) return the minimum of an array
max(arg) return the maximum of an array
mean(arg) return the mean of an array
total(arg) sum all entries of an array
fltarr(arg) creates an array of zeros of specified length
findgen(arg) creates an array of natural numbers of specified length

Tabelle 3: Some useful arithmetic functions implemented in IDL.

2.1.2 Arrays

You can perform the basic arithmetic operations not only on single numbers but allso on arrays
of data. For example, type:
a = [1,2,3]
print, a
print, a + a
print, 2 * a

Arrays can be multidimensional b = [[1,2],[3,4]] creates a 2×2 matrix. We will handle
images as large two dimensional arrays and curves as one dimensional arrays.

2.1.3 Functions

IDL has a lot of so called functions implemented. Most mathematical operations are in imple-
mented as functions. All functions have in common that they return a value. Some functions take
one or multiple arguments. Some useful basic functions are listed in table 3.
Example:

a = sqrt(5.0)
print, a

2.1.4 Procedures

Procedures are similar to functions. One difference is that procedures do not need to have a return
value. If procedures are called with one or more arguments, those are passed to them separated by
commas. You already know the print procedure. Other useful procedures are help and statist
to gain information about a variable. We will use the plot and the tvscl procedures to display
our data.

Kiepenheuer-Institut für Sonnenphysik, Freiburg Lab course

4 IDL Manual

!h

command meaning
eq equal
gt greater than
ge greater equal
lt less then
le less equal
not negates the statement

Tabelle 4: Logical operators in IDL

Example:

x = findgen(1000)
y = (x-300.)^2
plot, x, y

Some functions and procedures can be passed a lot of arguments. See the exelis web page for
further information on procedures.

2.1.5 Writing your own programs

IDL procedures and functions are written in ASCII files named .pro. To write a program just crea-
te a file call, e.g. myprogram.pro and open it. Do not use capital letters in file names, otherwise IDL
does not compile it automatically. The beginning of a program must contain pro program_name,
at the end the end statement is needed.

Example:

pro myprogram
print, ’hello world’
end

Save this program and type its name in the IDL prompt. The program is executed. If you
change something in the program and save it while IDL is still open you have to compile. You can
do so by typing .r program_name int the prompt. The program has either to be located in the
directory where you started IDL or the directory where the program is located has to be added
to the IDL_PATH variable for IDL to find the program. You can do everything inside a program
that you can do in the command line. For example define variables, execute calculation or call
other procedures and functions.

Lab course Kiepenheuer-Institut für Sonnenphysik, Freiburg

Manual IDL 5

2.1.6 Comparison

2.1.7 If clause

You can compare variables in IDL with the logical operators listed in table 4. The if clause lets
you execute parts of your program if certain conditions are fulfilled.
Example:

a = 1 b = 1 if a eq b then print, 'hello'
Everything after the ’then’ is executed if the condition is true. If you want to execute multiple

lines you can use the begin and endif statements. They function like brackets in many other
languages do.
if a eq b then begin
print, 'hello'
endif

2.1.8 Else clause

You may optionally add an else in case you want to execute something else when the if clause is
not fulfilled.
if a eq b then begin
print, 'hello'
endif else begin
print, 'hola'
endelse

2.1.9 For loop

The for loop is useful if you want to run the same section of a program multiple times.
You can execute it in one line:

for i=0,9 do print, i

Or you can also repeat multiple lines of your program:
array = findgen(10)
for i=0,n_elements(array)−1 do begin
array[i] = 0
endfor

The if else and for commands should be sufficient for the lab course. There are others like while
and case as well.

Kiepenheuer-Institut für Sonnenphysik, Freiburg Lab course

6 IDL Manual

2.1.10 Ploting

Use the plot command to display curves.
Minimal example:

x = findgen(100)
y = x^2
plot, x, y

You can also change colors and overplot other curves.
x = findgen(100)
y = x^2
plot, x, y, xtitle = 'xaxis', ytitle = 'yaxis'
loadct, 2 ; load a different color table
oplot, x, y+300, color = 100

There are a lot other commands which you can use to tweak your figures.

2.1.11 Displaying data arrays

Two dimensional arrays are displayed with tvscl. We will use this command to display images.
It scales the array between its minimum and maximum.
image = dist(200) ; create an image for demonstration purposes tvscl, image

2.1.12 Working with arrays

If you have a large image you may not be interested in the whole array. You can address subsections
as follows:
array = dist(1000)
subimage = array[300:599,100:799]
tvscl, subimage

• Note that IDL starts counting with zero.

You can also slice a multidimensional array:
line = reform(subimage[100,*])
plot, line

∗ addresses the whole dimension. The reform function reduces the dimensionality (IDL is
sometimes a little weird).

Lab course Kiepenheuer-Institut für Sonnenphysik, Freiburg

Manual IDL 7

2.1.13 The stop command

The stop command is a very useful debugging tool, the program stops where you put it and
jumps to the command line. You can address all defined variables there. You can also change
their values. With .c (for continue) you can proceed again.

2.1.14 Comments

You can comment in IDL with the hashtag symbol.
; this line will not be executed.

Kiepenheuer-Institut für Sonnenphysik, Freiburg Lab course

8 IDL Manual

2.2 Optional tasks

The Fibonacci series
The Fibonacci series f(n) is defined as:

f(1) = 1

f(2) = 1

f(n) = f(n− 2) + f(n− 1) for n > 2

• Write a function that calculates the nth element of the Fibonacci series.

• Plot the Fibonacci series up to the 100th element.

Prime Numbers

• Write a program that checks whether a natural is a prime number.

• Write a program that counts the number of prime numbers in a given interval.

Lab course Kiepenheuer-Institut für Sonnenphysik, Freiburg

Manual IDL 9

3 GDL incompatible part

This part uses functions which are not supported by the freeware version. You need the commercial
IDL.

3.1 Reading data

First, the file containing the data has to be specified. Then the data in this file can be read into
a variable.

path=’/Pfad 1/Pfad 2/.../Bildordner’ file=’test.fits’ raw = readfits(path+file)
The variable raw is multidimensional. Its structure can be determined with:

s = size(raw, /dim) print, s

3.2 Saving and restoring data

If one uses exclussively IDL saving into an idl .sav file is useful. Otherwise there are also ways
to write into ASCII files.

data = findgen(100) save, data, filename = ’test.sav’
IDL could be closed now. In a new session the variable can be restored via:

3.3 Exporting figures

Alternatively to plotting data into the x-window the .eps format can be chosen aswell. Be careful
and double check your plot. x-window and eps figures do not look the same.

x = findgen(10)
set_plot, ’ps’
device, filename = ’test.eps’, /encapsulated, /color
plot, x
device, /close
set_plot, ’x’
One might want to convert the result into .pdf later from the command line. To do this type

epstopdf text.eps in the prompt after creating the file.
Two dimensional arrays can be saved as .png.

image = dist(300)
write_png, ’test.png’, bytscl(image)

Kiepenheuer-Institut für Sonnenphysik, Freiburg Lab course

10 IDL Manual

3.4 Fitting curves

Parabola fit
There are multiple function to fit curves to data in IDL. For a parabola fit poly_fit is useful.

y = spectrum[x0:x1]
y = [13., 9., 7.,3., 2.,3., 5., 8., 12.]
x = findgen(n_elements(y)
p = reform(poly_fit(x,y,2))
fit = p[0] + p[1] x + p[2] x2̂
plot, x, y
loadct, 2
oplot, x, fit, color = 100

Fitting arbitrary functions using curvefit
You can use IDL to fit any analytical function to your data. The following example shows how to
fit a sine curve.

f(x) = a sin(bx+ c) + d (1)

Calculate the partial derivatives with respect to the free parameters:

df
da

= sin(bx) (2)

df
db

= ax cos(bx+ c) (3)

df
dc

= a cos(bx+ c) (4)

df
dd

= 1.0 (5)

Now we write a program which creates the curve we want to fit. Create a file and name it
sine_function.pro. Write the following program:

pro sine_function, x, param, f, pder
f = param[0] * sin(param[1]*x + param[2]) + param[3]
if n_params() ge 4 then $

pder = [[sin(param[1]*x + param[2])], $
[param[0]*x*cos(param[1]*x+param[2])], $
[param[0]*cos(param[1]*x+param[2])], $
[replicate(1.0, n_elements(x))]]

end

Lab course Kiepenheuer-Institut für Sonnenphysik, Freiburg

Manual IDL 11

It contains the defentition of the function. When it is called dith four parameters it returns the
partial derivatives aswell. Compile the function. Now we create sample data to fit:

xdata = findgen(1000)
ydata = sin(xdata/1000.*2.*!pi)*5.+2.+randomn(seed, 1000)
plot, xdata, ydata
;We define equal weights and call curve fit:
weights = replicate(1., n_elements(xdata))
;Initial guess parameters:
a = [3.,0.007,0.,0.]
yfit = curvefit(xdata, ydata, weights, a, sigma, function_name='sine_function')
loadct, 2, /silent
oplot, xdata, ydata, color=100

3.5 Data Analysis

We recommend to analyze your data within an IDL procedure. Create a .pro file for each lab
experiment.

pro analysis
load some data here
#do some calculations
#plot some figures
stop
end

This way you can iteratively change and adjust your program, save it, recompile it and run it
again. Always leave a stop at the end so you can do some testing. Analyzing data this way is way
more convenient than loading everything from the command line.

Kiepenheuer-Institut für Sonnenphysik, Freiburg Lab course

	Introduction
	GDL compatible part
	Using IDl as a calculator
	Data types and variables
	Arrays
	Functions
	Procedures
	Writing your own programs
	Comparison
	If clause
	Else clause
	For loop
	Ploting
	Displaying data arrays
	Working with arrays
	The stop command
	Comments

	Optional tasks

	GDL incompatible part
	Reading data
	Saving and restoring data
	Exporting figures
	Fitting curves
	Data Analysis

